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A trapping mechanism is observed and proposed as the origin of the anomalous behavior recently discovered
in transport properties of overdamped ratchets subject to an external oscillatory drive in the presence of
quenched noise. In particular, this mechanism is shown to appear whenever the quenched disorder strength is
greater than a threshold value. The minimum disorder strength required for the existence of traps is determined
by studying the trap structure in a disorder configuration space. An approximation to the trapping probability
density function in a disordered region of finite length included in an otherwise perfect ratchet lattice is
obtained. The mean velocity of the particles and the diffusion coefficient are found to have a nonmonotonic
dependence on the quenched noise strength due to the presence of the traps.
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I. INTRODUCTION

The existence of chaotic behavior, which is the seemingly
random complex motion observed in deterministic nonlinear
systems, is now well established. In particular, many ap-
proaches have been developed for characterizing and under-
standing the nature of chaotic motion �1�.

In addition to chaotic behavior, it has also been shown
that deterministic systems can exhibit anomalous transport
and strange kinetics �2–5�. In analogy with stochastic pro-
cesses, in the case of normal diffusion �6,7�, the mean square
displacement �x2� is proportional to time t ��x2�� t�, while in
the case of strange kinetics �3,4,8�, �x2�� t�, with ��2 for
enhanced diffusion and 1���2 for dispersive motion. The
mean square displacement can also have a logarithmic de-
pendence on time, corresponding to �=0 �9,10�. Strange ki-
netics as well as diffusive motion have been observed in both
deterministic nonlinear systems �11–15� as well as thermal
ratchets �16�.

In this paper we concentrate on the dynamics of a deter-
ministic thermal ratchet in the presence of a driving force. It
has recently been shown �16� that quenched disorder induces
a normal diffusive kinetics in addition to the drift due to the
external drive. Moreover, this diffusive motion is enhanced
by higher values of the quenched disorder. If the quenched
disorder has long-range spatial correlations, diffusion be-
comes anomalous, and both the correlation degree and the
amount of quenched disorder can enhance the anomalous
diffusive transport �17�. Anomalous transport has been found
recently in overdamped systems �18,19�. In Linder et al. �18�
an anomalous coherence is reported and Reimann et al. �19�
find divergence on the diffusion coefficient. Although our
system differs from those previously reported due to the
presence of quenched disorder and driving force, the trans-
port anomaly presents some similarities that will be dis-
cussed below. While anomalous transport in quenched disor-
der ratchets was observed for a range of values of the
parameters, the mechanism leading to this unusual behavior
has not been investigated. Transport properties of ratchets
�for a recent review of ratchets, see �20�� is a topic of great

current interest, due to the possible application of these mod-
els for understanding such systems as molecular motors
�21,22�, nanoscale friction �23–25�, surface smoothing �26�,
coupled Josephson junctions �27�, as well as mass separation
and trapping at the microscale �28–31�. The fluctuations that
produce the net transport are usually associated with noise,
but they may arise also in absence of noise, with additive
forcing, in overdamped deterministic systems �32�, over-
damped quenched systems �16�, and in underdamped ratch-
ets �33–36�.

The aim of this paper is to show that a trapping mecha-
nism is responsible for the observed dispersive anomalous
transport in an overdamped ratchet subject to an external
oscillatory drive �37�. In particular, we show that this mecha-
nism appears when the quenched disorder strength is greater
than a threshold value. The minimum disorder strength re-
quired for the existence of traps is determined by studying
the trap structure in a disorder configuration space. An ap-
proximation to the trapping probability density function in a
disordered region of finite length included in an otherwise
perfect ratchet lattice is obtained. We show that due to this
trapping mechanism, the mean velocity of the particles and
the diffusion coefficient have a nonmonotonic dependence
on the quenched noise strength.

The outline of the paper is as follows. In Sec. II we
present the single-particle model, in Sec. III we define the
ensemble and the cumulants, in Sec. IV we present the trap-
ping mechanism, and we discuss its consequences in Sec. V.
Conclusions are presented in Sec. VI.

II. MODEL

The motion of a single particle in an overdamped disor-
dered media is modeled by an overdamped ratchet subject to
an external oscillatory drive in the presence of a quenched
noise, using the dynamical equation

�ẋ = R�x� + F�t� + G�x� , �1�

where � is the damping coefficient, R�x�=−dU /dx is the
ratchet force, F�t� is the time-dependent external force, and
G�x� is the quenched disorder force.

PHYSICAL REVIEW E 75, 051101 �2007�

1539-3755/2007/75�5�/051101�8� ©2007 The American Physical Society051101-1

http://dx.doi.org/10.1103/PhysRevE.75.051101


The periodic, asymmetric, ratchet potential is modeled by
the equation

U�x� = − sin�x� −
�

2
sin�2x� , �2�

with the spatial period �=2�, as in previous works
�16,33–36,38�. The external oscillatory force is given by

F�t� = � sin��t� , �3�

where � and � are the amplitude and the frequency of the
oscillations, respectively. The effect of the substrate random-
ness is modeled by a quenched disorder term of the form

G�x� = 	 �
i=−





��i��H�x − i�� − H„x − �i + 1��…� , �4�

where the coefficient 	�0 is the quenched disorder strength,
H is the Heaviside function, and ��i� are independent, uni-
formly distributed random numbers in �−1,1�. The extension
to correlated disorder is straightforward. The force G�x� is a
piecewise constant force for every period of the ratchet po-
tential and gives a reasonably realistic representation of the
effects of the substrate.

In order to carry out a numerical solution of Eq. �1� we
have carried out a fourth-order fixed-step Runge-Kutta
method �39�. Since we are interested in the influence of �
and 	 on the transport properties of the system, the remain-
ing parameters are set to the following values, which were
used in previous works �16,36,37,40�:

� = 1 � = 0.5 � = 0.1. �5�

We have carried out numerical solutions of the evolution
equation using the following dimensionless variables: �1�
The dimensionless position x̃=x /�, which gives the position
of the particle along the valleys of the ratchet potential; �2�
the dimensionless velocity ṽ=v /v�, with v�=� /T �The
mean value of ṽ gives the transport velocity of a particle
along the ratchet�; and �3� the discrete sequences obtained by
sampling x̃ and ṽ with a sampling period Tsa=T=2� /�:

x̃sa = x̃�kT�, ṽsa = ṽ�kT� , �6�

with �k=0,1 ,2 , . . . �. Using these variables it is possible to
detect synchronization with the external driving force.

A typical trajectory of Eq. �1� consists of an oscillation
superimposed on a directed transport motion with average
speed �ṽ�. The particular case of �ṽ�=0 indicates no transport
along the ratchet.

In a perfect lattice �i.e., 	=0� massless particles remain
synchronized over the entire �� ,�� parameter space �40�.
The bifurcation diagrams of ṽsa and �ṽ� as a function of � are
shown in Fig. 1 for � in the range �0, 2�. Figure 1 shows that
ṽsa is a monotonically increasing function of � and �ṽ� is a
stepped function with jumps at specific � values. The mean-
ing of these jumps may be understood by considering how
the particle’s position x̃ varies as a function of time t̃. When
� is below 0.96 the particle starts in a potential valley and
oscillates inside the valley in synchrony with the external
driving force, returning every T to the same position inside

the valley. The particle also has the same velocity. This syn-
chronism explains why only one value of ṽsa is obtained: at
every sampling time the velocity of the particle has the same
value within its oscillatory motion.

Over the region �� �0.96,1.22�, every � value has only
one value for ṽsa but now �ṽ�=1, showing that the particle
remains synchronized with the external driving force but
now it advances one spatial period �one valley� during T. As
� further increases the particle advances two valleys and
then three valleys during each T �see the labels �+2,−0� and
�+3,−0� in Fig. 1�, giving �ṽ�=2 and �ṽ�=3, respectively.
Furthermore, it remains synchronized, giving only one value
of ṽsa. If � further increases, �ṽ� jumps to a lower value,
because during the positive half cycle the particle goes for-
ward, crossing several valleys, but it returns to one or more
valleys during the negative half cycle. This explains the la-
bels in Fig. 1. The motion of the particle remains synchro-
nized with the external force through the entire range �0, 2�
as is shown by the single value of ṽsa.

III. COLLECTIVE MOTION

We have studied the evolution of an ensemble of nonin-
teracting particles, uniformly distributed over one whole po-
tential valley. The initial position of the particles is given by
the particle density function

�x,0� = �H�x̃ − x̃min� − H�x̃ − x̃max�� , �7�

with x̃max= x̃min+1.
The ensemble was allowed to evolve up to a time t̃

=1000, while the positions of the particles were obtained at
times t̃k=10k �k=0,1 , . . . � and stored for further analysis. In
order to perform averages over the realizations of disorder, a
different quenched disorder sequence was used for each tra-
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FIG. 1. Sampled velocity ṽsa and mean velocity �ṽ� of a particle
in a perfect lattice, as a function of �. The particle starts at x̃=0.
Note the jumps in �ṽ� at �	0.96, 1.22, 1.47, 1.57, 1.75, 1.95, but
ṽsa has no bifurcations in this range of �. The label over each zone
indicates the number of valleys crossed by the particle, forward
�+� and backward �−�, in a period T.
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jectory. In this way, the average over the trajectories also
includes an average over different realizations of the disor-
der.

To characterize the evolution of the packet, the first two
cumulants

C̃1 = �x̃k�, C̃2 = �x̃k
2� − C̃1

2, �8�

and their temporal derivatives

�Ṽ� = lim t → 
 �dC̃1/dt̃�, D̃ = lim t → 
 �dC̃2/dt̃� ,

�9�

were evaluated at the sampling times as a function of time.

Here �Ṽ� is the mean velocity and D̃ is the diffusion coeffi-
cient. In all cases considered, it was verified that all higher-
order cumulants increase more slowly than tn/2, ensuring that
�x , t� is asymptotically a Gaussian and can be determined
using the first two moments only.

IV. THE TRAPPING MECHANISM

The superposition of the force F�t�, with zero temporal
mean, and the force R�x� with a zero spatial mean value
allows the particles to move at different speeds along the
potential. Consequently, in spite of the zero spatial mean
value of the force R�x� produced by the ratchet potential

�R�x̃ =
1

N



x̃1

x̃1+N

R�x̃�dx̃ =
1

N
�U�x̃ + N� − U�x̃�� = 0, �10�

the time-averaged mean value experienced by the particles is
not zero, and is given by

�R�t̃ =
1

N



t̃1

t̃1+1

R�x̃�t̃��dt̃ . �11�

This is in fact the reason a sinusoidal driving force produces
a positive drift motion when it is combined with the ratchet
potential.

A significant consequence of the quenched disorder is the
appearance of a trapping mechanism, which arises only in
the disordered case �	�0�. Traps are a small number of
contiguous valleys with a negative time-averaged quenched-
disorder mean value, that exactly compensate the positive
time-averaged mean value of the ratchet potential force. This
trapping can be predicted from the synchronization analysis
of the perfect lattice case. As an example let us consider the
case �=1.65. This � corresponds to the synchronization
zone �+3,−1� in Fig. 1. When 	�0 a particle experiences a
force that is a combination of the ratchet force plus a sinu-
soidal force with variable amplitude �eq between �−	 and
�+	. Thus, disorder enables the particle to reach different
zones, as can be seen in Fig. 1. For example, for 	=0.1, the
available regions for a particle are �+3,−0� and �+3,−1�.
Then the possible values of �ṽ� are a result of the combina-
tion of the positive and the negative terms: +3−0=3 and
+3−1=2. Thus, ṽ is bounded between 2 and 3. For 	=	z
	0.175 the available regions become �+2,−0�, �+3,−0�,
�+3,−1�, �+4,−1�, and �+4,−2�. Then the possible values of

�ṽ� are +4−0=4, +4−1=3, +4−2=2, +3−0=3, +3−1=2,
+3−2=1, +2−1=1, +2−2=0. Since zero is a possible value,
then the particle can be localized or trapped. This corre-
sponds to a particle going forward two valleys during the
positive half cycle and going backward two valleys during
the negative half cycle. Consequently, the trapped particle
oscillates inside three valleys in synchrony with the external
driving force. While this analysis is not exact, it provides a
reasonable explanation for both the minimal disorder
strength and the corresponding length K in which particles
can be trapped.

In order to determine the trapping probability, we will first
define the quenched disorder forces G�x� of Eq. �1�, in one of
K consecutive valleys, as the coordinate of a K-dimensional
disorder configuration space. Possible combinations of disor-
der are studied in this space and each combination is classi-
fied either as a trap or a nontrap. For example for �=1.65,
K=3; then all possible combinations of three consecutive
valleys were studied. The results are shown in a K=3 disor-
der configuration space in Fig. 2. Note that the trapping re-
gion in this space changes shape as 	 increases from 0.2 in
Fig. 2�a� to 0.3 in Fig. 2�c�. For low values of 	 there are no
traps at all. At a critical value of 	��K=�3 the first trap
appears �see Fig. 2�a��. Let us call this trap the basic trap as
it consists of K consecutive valleys with equal disorder
strength �for the case �=1.65, K=3, and �3�0.136�.

Note that the volume of the trapping configuration region
further increases with increasing 	 �see Fig. 2�b��. For 	
=�K−1=�2�0.21 �see Fig. 2�c��, two arms appear, corre-
sponding to traps of only K−1 consecutive valleys �for the
case �=1.65, K−1=2�. If 	 is further increased, there exists
a higher value �K−2=�1 over which traps of only one valley
appear. Note that the minimum 	 for which traps appear is
�K.

When K=2, the disorder configuration space is two di-
mensional. Traps appear when 	��K=�2. In the interval
�2�	��1, the probability space �which corresponds to
trapping events� gradually mutates from a single triangular
shape into a square as 	 grows. When 	��1, two narrow,
rectangle-shaped arms appear, because it is possible now for
a particle to get trapped in just one valley. We note that, in
Fig. 2, in which a K=3 case is considered, the �1 value is
outside the plotting range. If �1 had been included in the plot
three rectangular prisms would have appeared, one for each
random variable. For instance, the prism that corresponds to
valley number 1 would have occupied the volume

�− 	 � 	�1 � − �1

− 	 � 	�2 � 	

− 	 � 	�2 � 	
 . �12�

For each 	 value the cumulative probability of trapping in
a K-length trap, called p�	 ,K�, is evaluated as the ratio be-
tween the volume of the trapping region and �2	�K.

When a disordered region of finite length L�K is consid-
ered the cumulative probability of trapping is approximately
given by

P�	,K,L� = 1 − Q�	,K,L� ,
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Q�	,K,L� � �1 − p�	,K��L−K+1. �13�

The approximation used to obtain Eq. �13� is based on the
assumption that the events of actual trapping of the particle
in the neighborhood of the K-length traps are independent.

Let F�	 ,L� be the fraction of particles traversing the
length L of the disordered region. We define f�	 ,L� by the
relation

f�	,L� = d�1 − F�	,L��/d	 . �14�

In Fig. 3, f�	 ,L� is compared with dP�	 ,K ,L� /d	 with the
values of P�	 ,K ,L� obtained from Eq. �13�. The good agree-

ment between the two results confirms that the independent
events approximation used in Eq. �13� is clearly valid for 	
values below �K−1. Note that the local maximum of both
curves in Fig. 3 occurs at �K−1	0.21, corresponding to the
value at which the arms begin to appear in the disorder-
configuration space �see Fig. 2�b��. We note that the value
�K−2	0.5720, where K−2 valley length traps appear, falls
outside the range of the plotted values.

As the disorder region length L grows, the shape of Fig. 3
becomes thinner but its left end is still at 	=�K �in this case,
	=�3�. If L tends to infinity the probability that a particle
finds a K-length trap tends to unity when 	=�K. Then, the
shape of Fig. 3 becomes a Dirac � function, which is also
predicted by Eqs. �13� and �14�.

We have carried out similar studies for many other values
of � in the range �0, 2�. We have found that in most of the
cases studied, the correlation effects are not important and
Eq. �13� is accurate enough for determining the probability
density function P�	 ,K ,L�. There are a few � values, how-
ever, for which the correlation effects cannot be easily ne-
glected, since �K	�K−1, and the arms in the disorder con-
figuration space �like the one in Fig. 2� appear early on.

As seen in Fig. 4, Eq. �13� is not accurate when 	��K.
This is because the correlations cannot be neglected in this
region. We propose another method, which we call the
conditional-probability method �CPM�, that takes the corre-
lations into account. This method is always accurate pro-
vided that 	��1 but for some � values it also works well in
the entire 	��1 range.

Calculations based on the CPM involve the following
steps. �1� Approximate the probability space volume occu-
pied by trapping events �both black and gray dots in Fig. 3�
by a polyhedron in which the faces are perpendicular to the
coordinate axes. The 	��1 case must be considered and
rectangle prisms are the main volume component. The
smaller volume components are optionally considered, if the
method’s range of valid 	 values is to be increased. If K
=2 we have a probability space enclosed by a surface with
faces that are perpendicular to the coordinate axes. �2� Write
the volume equations of the nontrapping events, that is, the

FIG. 2. Three-dimensional disorder configuration space for �
=1.65, �=0.1, �=1, and �=0.5 as a function of 	. The axes rep-
resent the quenched disorder in three consecutive valleys. The black
dots correspond to triplets acting as traps. �a� The case 	
=0.20��K. Note the small trapping region at the corner 	�1=	�2

=	�3=−�K. �b� The case 	=0.22��K−1. Note the appearance of
two-dimensional arms at 	=�K−1. �c� The case 	=0.30��K−1.
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volume outside the polyhedron, as the union of the set of
volumes. The probability of having no traps is proportional
to this volume. For example, let us consider the �=1.35 case
for which K=2. The nontrapping probability Q�	 ,K ,L�
=Q�	 ,2 ,2� agrees approximately with

Q�	,2,2��4	2� = �− �1 � 	�1 � 	

− �1 � 	�2 � 	
� . �15�

If the smaller surface of trapping events approximately given
by

− �1 � 	�1 � − �2,− �1 � 	�2 � − �2 �16�

is taken into account, we can instead write

Q�	,2,2��4	2� = ��− �2 � 	�1 � 	

− �2 � 	�2 � 	
� � � − �2 � 	�1 � 	

− �1 � 	�2 � − �2
� � �− �1 � 	�1 � − �2

− �2 � 	�2 � 	
�� . �17�

�3� Increase L, sequentially, in single steps, and find the new volume as the intersection of the previous volumes. That is,
Q�	 ,K ,L−1�. �2	��L−1�, expanded for all 	�L and the original K-dimensional volume expanded for all 	�1, 	�2 . . . ,	�L−K

values. Continuing with this procedure and using the most accurate volume equation, we can write the L=3 volume in the
following way:

Q�	,2,3��8	3� = ��− �2 � 	�1 � 	

− �2 � 	�2 � 	

− 	 � 	�3 � 	
 � � − �2 � 	�1 � 	

− �1 � 	�2 � − �2

− 	 � 	�3 � 	
 � �− �1 � 	�1 � − �2

− �2 � 	�2 � 	

− 	 � 	�3 � 	
�

� �� − 	 � 	�1 � 	

− �2 � 	�2 � 	

− �2 � 	�3 � 	
 � � − 	 � 	�1 � 	

− �2 � 	�2 � 	

− �1 � 	�3 � − �2
 � � − 	 � 	�1 � 	

− �1 � 	�2 � − �2

− �2 � 	�3 � 	
� . �18�

Applying the distributive property, the intersection of volumes is computed, yielding

Q�	,2,3��8	3� = �− �2 � 	�1 � 	

− �2 � 	�2 � 	

− �2 � 	�3 � 	
 � � − �2 � 	�1 � 	

− �2 � 	�2 � 	

− �1 � 	�3 � − �2
 � � − �2 � 	�1 � 	

− �1 � 	�2 � − �2

− �2 � 	�3 � 	


� �− �1 � 	�1 � − �2

− �2 � 	�2 � 	

− �2 � 	�3 � 	
 � �− �1 � 	�1 � − �2

− �2 � 	�2 � 	

− �1 � 	�3 � − �2
 . �19�

To find the L=4 hypervolume, the surface in Eq. �17� should be expanded to 4D, all over −	�	�1�	, −	�	�2�	 as
follows:

��
− 	 � 	�1 � 	

− 	 � 	�2 � 	

− �2 � 	�3 � 	

− �2 � 	�4 � 	
 ��

− 	 � 	�1 � 	
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− �1 � 	�4 � − �2

 ��
− 	 � 	�1 � 	

− 	 � 	�2 � 	

− �1 � 	�3 � − �2

− �2 � 	�4 � 	
� �20�
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FIG. 4. Fraction of particles traversing a length L=15 disor-
dered region plotted as a function of 	, for �=1.35, �=0.1, �=1,
and �=0.5. Circle markers corresponds to simulations obtained
with 1600 particles. Dotted line corresponds to function Q�	 ,K ,L�
in Eq. �13�, where no correlation is considered between contiguous
traps. Solid line corresponds to Q�	 ,K ,L� found by using the CPM.
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and the volume in Eq. �19� should also be expanded to 4D all
over −	�	�4�	. Finally the intersection between these 4D
hypervolumes must be found.

As L grows, the number of component hypervolumes in
the set increases and their intersections are hard to calculate
by hand. We calculated the resultant hypervolume up to L
=15 by using a binary method in which intersections are
“and” Boolean operators. Figure 4 shows that there is excel-
lent agreement when 	��1 for L=15.

V. CONNECTION BETWEEN TRAPPING AND
TRANSPORT PROPERTIES

The presence of the traps has a significant macroscopic
consequence in multiparticle systems on the variation of the

current �Ṽ� and the diffusion coefficient D̃. In order to ex-

plain this consequence, consider the cumulants C̃1 and C̃2,
shown in Fig. 5, as a function of time for a packet of 2200
massless particles with �=1.65, �=0.1, �=1, L=50, and �

=0.5. The corresponding derivatives �Ṽ� and �D̃�, are plotted
as a function of 	 in Figs. 6�a�–6�c�. We note that, as a
function of 	, four regions with different transport properties
may be recognized in these figures.

�1� Very low disorder strength region, 	�0.08. In this
region the disorder has no effect �see the case 	=0.06 in Fig.

5�, the first cumulant C̃1 is proportional to t̃ and there is no

diffusion as evidenced by the constant value of C̃2 and the

zero value of �D̃� �see Fig. 6�c��. Particles can only reach the
region �+3,−1� of Fig. 1 and the only possible value of the

mean velocity of the particles is 2. Thus, �Ṽ� remains con-
stant equal to 2 and the dynamics is essentially the same as
in the perfect lattice case.

�2� Intermediate disorder region, 0.08�	��K=0.136
�see the case 	=0.12 in Figs. 5 and 6�c�, where this region is

enlarged�. In this region, the first cumulant C̃1 is proportional

to t̃, but now C̃2� t̃, indicating the existence of normal dif-
fusion. The slope of the packet mean velocity changes
abruptly for each value of 	, where a new mode is reached,
as seen in Fig. 1. At 	�0.08 the region labeled �+3,−0� is
reached and the mean velocity may have one of the two

values +2 or +3. Consequently Ṽ increases with 	, as can be
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time t̃, for 2200 massless particles, traversing an L=50 disordered
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seen in Fig. 6�a�. At 	=0.1 region �+4,−1� is also available
and the mean velocity can have any of the values +2, +3, and
+4. Then Ṽ continues increasing with 	, with a higher slope.
Figure 6�c� shows an enlarged view of a region of Fig. 6�b�,
where the normal diffusion can be observed. As can be seen,
for 	�0.08 transport is not diffusive. At 	=0.08 normal
diffusion starts and as 	 is increased further, diffusion is
enhanced and the same critical value of 	 appear as in the
case of Ṽ �Fig. 6�a��.

�3� The region 		�K=0.136 �see, for example, the case
	=0.145 in Fig. 5�. In this region the trapping mechanism
has already started. The cumulants C1 and C2 increase as t̃H

with H�1, indicating a superdiffusive behavior. The time
dependence of the second moment is very complicated dur-
ing the trapping process and it strongly depends on both the
quenched disorder realization and the strength of the disor-
der. This transitory time is considerably reduced as 	 in-
creases beyond the threshold. The trapping mechanism pro-

duces an abrupt descent in Ṽ. The other values �K−1=�2 and
�K−2=�1 do not appear in Figs. 6 because the probability
that a particle gets trapped in a K=3 valley length trap ap-
proaches 1 for a disorder region with L=50�K=3, and most
particles get trapped in K=3 length valleys, regardless of
whether K−1=2 and K−2=1 length traps exist or not. In
Fig. 6�b� the superdiffusive region is clearly recognized by

the high values in D̃. Below the threshold value �K, diffusion

is normal, and D̃ is much smaller than in the superdiffusive

region. Note that C̃2 varies with time in a very complicated
way as long as there exist both trapped and untrapped par-
ticles. Untrapped particles suffer a normal diffusion process
but trapped particles cause the packet to get wider as it

evolves, increasing D̃. In fact, for t→
 �and consequently

L→
� all particles get finally trapped and D̃→0.
�4� The region 	��K �see the case 	=0.165 in Fig. 5�. In

this region, complete trapping occurs even for small disor-

dered zones, and both �Ṽ� and D̃ decrease to zero. The sys-
tem undergoes a transition at 	=�K between two different
transport regimes: for 	��K there is normal diffusive trans-
port while for 	��K both transport and diffusion disappear.

In the neighborhood of 	=�K, anomalous diffusion is
present. The anomalous transport found recently in an over-
damped tilted potential model with thermal noise but without
quenched disorder and driving force �19�, a similar transition
between normal diffusive transport is given by the variation
of the tilting force F, and anomalous diffusion appears near
the critical value Fc.

The anomalous transport effect of trapping is robust under
thermal fluctuations in the sense that thermal fluctuation am-
plitudes of the order of the quenched disorder strength are
required to destroy this effect.

VI. CONCLUSIONS

A trapping mechanism is discovered that is proposed as
the origin of the anomalous transport in a multiparticle over-
damped disordered ratchet. It is found that, once a particle
reaches a trap, it remains localized inside a small region,
oscillating synchronously with the external force. By means
of the disorder configuration space, critical values for the
disorder strengths were determined, and the fraction of par-
ticles traversing a disordered region was obtained by means
of two methods. In the first method, valid for low disorder,
the effects of correlations between the contiguous traps were
neglected. In the second approach, which is valid for disor-
der strengths over all the critical values, correlations were
considered. The probability density function shows excellent
agreement with the simulation data. The trapping mechanism
presented here explains the singular behavior of velocity and
diffusion with disorder in overdamped ratchets reported in
�16�. This analysis may be helpful in the study of other sys-
tems exhibiting strange kinetics and also for practical appli-
cations such as the design of particle separation techniques in
multiparticle systems.
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